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Abstract. The phase diagram for quark matter is investigated within a simple Nambu–Jona-Lasinio model
without vector correlations. It is found that the phase structure in the temperature-density plane depends
sensitively on the parametrization of the model. We present two schemes of parametrization of the model
where, within the first one, a first-order phase transition from a phase with broken chiral symmetry to a
color superconducting phase for temperatures below the triple point at Tt = 55 MeV occurs, whereas for
the second one a second-order phase transition for temperatures below Tt = 7 MeV is found. In the latter
case, there is also a coexistence phase of broken chiral symmetry with color superconductivity, which is a
new finding within this class of models. Possible consequences for the phenomenology of the QCD phase
transition at high baryon densities are discussed.

PACS. 11.30.Rd Chiral symmetries – 12.38.Lg Other nonperturbative calculations – 11.10.Wx Finite-
temperature field theory – 25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase
transitions

1 Introduction

The phenomenon of color superconductivity [1–26] is of
general interest, in particular, in studies of the QCD phase
structure [9,10,14,15,17–23] and applications in the astro-
physics of compact stars [18,27]. Observable consequences
are expected for, e.g., the cooling behavior [28,29]. Differ-
ent aspects have been investigated so far, whereby mod-
els of the NJL type have been widely employed [30–33]
in studies of the phase structure in the vicinity of the
hadronization transition.

Recently, it has been shown in these investigations that
for low temperatures (T ) and not too large chemical po-
tentials (µ) the two-flavor color superconductivity (2SC)
phase is favored over alternative color superconducting
phases [20,21,24,25]. According to [25], the color-flavor-
locked (CFL) phase occurs only at µ � 430 MeV.

It is generally agreed that at low temperatures the
transition of matter from the phase with broken chiral
symmetry to the color superconducting phase is of the
first order (see, e.g., [14]). From the point of view of
phenomenological applications, as e.g. in compact-star
physics, the order of the phase transition to quark su-
perconducting matter plays an important role. The con-
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clusion about the first-order phase transition was drawn
within models without vector interaction channels taken
into account; the vector interaction has been considered
in few papers [34,35]. It was found that the presence of
quark interaction in the vector channel moves the critical
line in the µ-T plane to larger µ [14,36,37]. Recently it
has been demonstrated [38] that the critical line of the
first-order phase transition in the µ-T plane can have a
second end-point at low temperatures, besides the well-
known one at high temperatures. The latter one could
even be subject to experimental verification in heavy-ion
collisions [8], whereas the former could be of relevance for
neutron stars. While in ref. [38] this feature of the phase
diagram was a consequence of the presence of interaction
in the vector channel, in the present work we would like
to investigate the sensitivity of the phase diagram to the
choice of model parameters without interaction in the vec-
tor channel. We will demonstrate that in the absence of
vector channel interaction the phase transition is not nec-
essarily of the first order, thus revising the statements in
refs. [37,39].

It is worth noting that some progress has recently been
done in lattice calculations. Methods are being developed
that allow to extend lattice results to the case of finite
chemical potentials [40–42]. However, these methods are
valid only for small chemical potentials (see, e.g., [40]),
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under the conditions at which the color superconductivity
phase is expected to form.

The structure of our paper is as follows. In sect. 2, a
chiral quark model is introduced, its Lagrangian is given
and the model parameters are fixed from the vacuum state
in two different schemes. Temperature and chemical po-
tential are introduced into the quark model in sect. 3,
using the Matsubara formalism. The conclusions and a
discussion of the obtained results are given in sect. 4.

2 NJL model with the scalar diquark channel

In order to study the quark matter phase diagram in-
cluding color superconductivity, one should generalize the
concept of single order parameter related to the quark-
antiquark condensate in the case of chiral symmetry
breaking to a set of order parameters when condensation
can occur in other interaction channels too. The simplest
extension is the scalar diquark condensate 〈ψψ〉 for u and
d quarks:

δ =
〈
ψ̄iγ5τ2λ2Cψ̄T

〉
, (1)

which is an order parameter characterizing the domain
where the color symmetry is spontaneously broken and
the quark matter finds itself in the (two-flavor) color su-
perconducting state. This quantity is the most important
one among other possible condensates that can be con-
structed in accordance with the Pauli principle [25]. In (1)
the matrix C is the charge conjugation matrix operator for
fermions

C = iγ0γ2. (2)

The matrices τ2 and λ2 are Pauli and Gell-Mann matrices,
respectively. The first one acts on the flavor indices of
spinors, while the second one acts in the color space.

If the electroweak interaction is discarded and only
the strong coupling is in focus, the resulting quark mat-
ter phase diagram is essentially determined by nonpertur-
bative features of the QCD vacuum state. One therefore
has to resort to nonperturbative approaches to describe
the behavior of particles at various conditions, ranging
from cold and dilute matter up to the hot and dense one.
A reliable and widely tested model for nonperturbative
strong-coupling QCD is provided by the Dyson-Schwinger
equations [43], however, for qualitative studies like the
one we attempt here it proves to be too complex. There-
fore, we will use here a simple and tractable nonperturba-
tive model of quark interaction, the Nambu–Jona-Lasinio
(NJL) model [30–33,44,45], which has been extensively
exploited for the description of the properties of the light
meson sector of QCD (also to describe the color super-
conductivity phase [20,46,47]) and proved to be a model
respecting the low-energy theorems. Before we proceed
to the case of finite temperature and density, the model
parameters that determine the quark interaction should
be fixed. This will be done for the vacuum state where
hadronic properties are known. We shall assume, as com-
monly accepted, that once fixed, these parameters (origi-
nating from the nonperturbative gluon sector of QCD) do

not change, even in the vicinity of the transition to the
quark matter. This transition is thus caused by medium
effects in the quark sector only.

2.1 Lagrangian

In the present paper we restrict ourselves to the two-
flavor case, leaving the strange quark and effects related
to it out of our consideration. As we constrain ourselves
to only two order parameters, the quark and scalar di-
quark condensates, during our investigation, the interac-
tion of quarks will be represented in the Lagrangian by
SU(2)L × SU(2)R symmetric scalar, pseudoscalar quark-
antiquark, and scalar diquark vertices:

L = ψ̄(i�∂ − m̂0)ψ + Lqq̄ + Lqq, (3)

Lqq̄ =
G

2
[
(ψ̄ψ)2 + (ψ̄iγ5�τψ)2

]
, (4)

Lqq =
H

2
(ψ̄iγ5τ2λ2Cψ̄T )(ψTCiγ5τ2λ2ψ), (5)

where m̂0 is the diagonal current quark mass matrix m̂0 =
diag(mu,md), G and H are constants describing the inter-
action of quarks in the scalar, pseudoscalar, and scalar di-
quark channels, respectively. We work in the isospin sym-
metric case (m0

u = m0
d ≡ m0), thus m̂0 = m01f .

By the standard Hubbard-Stratonovich procedure , we
introduce the auxiliary scalar (σ), pseudoscalar triplet
(�π), and diquark (∆,∆∗) fields together with Yukawa-like
terms in the Lagrangian density instead of the four-quark
vertices:

L̃ = ψ̄(i �∂ −m0 + σ + iγ5�τ�π)ψ

−1
2
∆∗ψTCγ5τ2λ2ψ +

1
2
∆ψ̄γ5τ2λ2Cψ̄T

−σ2 + �π2

2G
− |∆|2

2H
. (6)

In order to integrate out the quark degrees of freedom by
the Gaussian path integration, it is appropriate to repre-
sent the quark fields by the bispinor

q(x) =
(

ψ(x)
Cψ̄T (x)

)
, (7)

and to introduce the matrix propagator S(p):

S−1(p) =
( �p− M̂ ∆γ5τ2λ2

−∆∗γ5τ2λ2 �p− M̂

)
. (8)

Integrating over q(x) and q̄(x), we then obtain an effective
Lagrangian in terms of collective scalar and pseudoscalar
quark-antiquark and scalar diquark excitations. Here, we
restrict ourselves to the mean-field approximation, leaving
the next-to-leading–order corrections in the 1/Nc expan-
sion outside our model. Finally, the effective Lagrangian
density reads

Leff = −σ2 + �π2

2G
− |∆|2

2H
− i

∫
d4p

(2π)4
1
2
Tr ln

(
S−1(p)

)
. (9)
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The trace in (8) is taken in the Dirac, color, and flavor
space. The matrix M̂ contains the σ and �π fields:

M̂ = (m0 − σ)1 − iγ5τaπa, (10)

the sum over a = 1, 2, 3 is assumed, and 1 = 1c · 1f · 1D.
As was mentioned above, we are working in the mean-

field approximation and the quark condensates are of in-
terest. Therefore, further study can be performed in terms
of the effective potential

Veff = − lim
v4→∞

1
v4

∫
v4

d4xLeff , (11)

where v4 is the 4-dimensional volume. The vacuum expec-
tation values of the collective variables σ, �π, ∆, and ∆∗
determine the absolute minimum of Veff . They are given
by the equation

∂Veff

∂σ
=

∂Veff

∂∆
=

∂Veff

∂∆∗ = 0 . (12)

A priori it is known that in the vacuum only the σ-field
acquires a nonvanishing expectation value. The diquark
fields ∆, ∆∗ are expected to have nonzero mean values
only in dense matter. The mean value of the pseudoscalar
isotriplet field �π is always equal to zero, therefore we omit
it hereafter.

Having solved eq. (12) for the field σ, one can work in
terms of the constituent quark mass m, connected with
the current quark mass by the gap equation

m0 −m = 〈σ〉 = 2G〈ψ̄ψ〉 . (13)

In the chiral limit (m0 = 0), the constituent quark mass
is proportional to the quark condensate and thus can be
treated as the order parameter.

In the NJL model the quark condensate is

〈ψ̄ψ〉 = −4mIΛ
1 (m), (14)

where

IΛ
1 (m) =

−iNc

(2π)4

∫
θ(Λ2 − �p 2)

d4p

m2 − p2
. (15)

The divergence in IΛ
1 (m) is eliminated by means of a sharp

3D cut-off at the scale Λ.

2.2 Parameter fixing

In our model we have four parameters: the four-quark in-
teraction constants G and H, the cut-off Λ, and the cur-
rent quark mass m0. Without diquarks, there are only
three: G, Λ, and m0. They are fixed by the following re-
lations.

1. The Goldberger-Treiman relation (GTR)

m = gπFπ , (16)

where F exp
π ≈ 93 MeV is the pion weak-coupling con-

stant and gπ describes the coupling of a pion with
quarks gπ�πψ̄�τψ:

g−2
π = 4IΛ

2 (m), IΛ
2 (m) =

−iNc

(2π)4

∫
θ(Λ2 − �p 2)d4p

(m2 − p2)2
.

(17)
2-a. The quark condensate (QC) from QCD sum rules

〈ψ̄ψ〉QCDSR = −4mIΛ
1 (m) ≈ (−240 MeV)3. (18)

2-b. The decay constant gρ for the ρ → 2π (R2PD) process

gρ =
√
6gπ, gexp

ρ ≈ 6.1 . (19)

The π-a1 transitions are omitted here.
3. The current quark mass m0 is fixed from the GMOR

relation:

M2
π =

−2m0
〈
ψ̄ψ

〉
F 2

π

, M exp
π ≈ 140 MeV . (20)

In the chiral limit Mπ = 0, m0 = 0.
4. With the diquark channel included, there is an addi-

tional parameter H which can be fixed as H = 3/4G
from the Fierz transformation (as, e.g., in [20])1.
In item 2, we have given two alternatives: one can ei-

ther use the value of the quark condensate taken from
QCD sum rule estimates or demand from the model that
it should describe the ρ → 2π decay. The latter is well ob-
servable in experiment contrary to the quark condensate.

For simplicity, we perform all calculations in the chiral
limit m0 = 0. In this case, when investigating the hot
and dense quark matter, the borders between phases turn
out to be sharp and the critical temperature and chemical
potential are well defined. With the finite current quark
mass, the transitions from one phase to the other become
smooth.

As a result, one obtains two different parameter sets
shown in table 1.

In the type-I parameter set the interaction of quarks
is stronger, the UV cut-off is smaller, and the constituent
quark mass is greater. One can calculate the dimensionless
constant GΛ2. It equals 4.6 for type I and 3.72 for type II,
respectively. As we will see further, these two parametriza-
tions result in qualitatively different phase diagrams.

3 NJL model at finite T and µ

3.1 Thermodynamic potential

We extend the NJL model to the case of finite tem-
peratures T and chemical potentials µ, applying the

1 Some authors use H = 1/2G. It turned out that within
our model the resulting phase diagram is not much affected if
one makes the choice in favor of H = 1/2G. However, it would
be preferable to fix the constant H from some observable, e.g.,
from the nucleon mass.
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Table 1. The model parameters for two different schemes of parameter fixing. The first row corresponds to the case where the
quark condensate value is used, while in the second row the parameters correspond to the case where the decay width of the
process ρ → 2π is used.

Λ G H m 3
√

− 〈
ψ̄ψ

〉
gρ

(GeV) (GeV−2) (GeV−2) (MeV) (MeV)

GTR+QC 600 12.8 9.6 350 240 9.2
(type I)

GTR+R2PD 856 5.1 3.8 233 284 6.1
(type II)

Matsubara formalism, and restrict ourselves to the isospin
symmetric case where up and down quark chemical poten-
tials coincide. The thermodynamic potential per volume is

Ω(T, µ) = −T
∑

n

∫
d3p

(π)3
1
2
Tr ln

(
1
T
S̃−1(iωn, �p )

)

+
σ2

2G
+

|∆|2
2H

, (21)

where ωn = (2n + 1)πT are the Matsubara frequencies
for fermions, and the chemical potential is included into
the definition of the inverse quark propagator

S̃−1(p0, �p ) =
( �p− M̂ − µγ0 ∆γ5τ2λ2

−∆∗γ5τ2λ2 �p− M̂ + µγ0

)
. (22)

The expression in (21) can be simplified using the
equations

1
2
Tr ln

(
S̃−1(iωn, �p )

)
=

4

[
ln

(
(ω2

n + E+2)(ω2
n + E−2)

T 4

)]

+2

[
ln

(
(ω2

n + ε+
2)(ω2

n + ε−2)
T 4

)]
(23)

and

T
∞∑

n=−∞
ln

(
(ω2

n + E±2)
T 2

)
=

E± + 2T ln[1 + exp(−E±/T )]. (24)

Ω(T, µ) = −
∫

d3p

(2π)3

{
2

(
2εθ(Λ2 − �p 2)

+2T ln
[
1 + exp

(
−ε+

T

)]

+2T ln
[
1 + exp

(
−ε−

T

)])

+4

((
E+ + E−)

θ(Λ2 − �p 2)

+2T ln
[
1 + exp

(
−E+

T

)]

+2T ln
[
1 + exp

(
−E−

T

)])}

+
m2

2G
+

|∆|2
2H

, (25)

where
ε =

√
�p 2 +m2, ε± = ε± µ, (26)

E± =
√

(ε±)2 + |∆|2. (27)

The cold-matter limit T = 0 looks as follows:

Ω(0, µ) = −
∫

d3p

(2π)3
[
2(|ε+|+ |ε−|) + 4(E+ + E−)

]
×θ(Λ2 − �p 2) +

m2

2G
+

|∆|2
2H

. (28)

The thermodynamic potential cannot be calculated in
closed form for arbitrary T and µ. However, in the cold
matter limit one can easily obtain analytic expressions
for the thermodynamic potential or its derivatives if only
one of the collective variables σ or |∆| has a nonvanishing
average value. This allows to find what kind of phase tran-
sition is to be expected for different parameter choices.

We evaluate the remaining 3D momentum integrals
numerically and calculate the value of the thermodynamic
potential at different T and µ for the two types of model
parameter sets. The equilibrium state for each T and µ is
determined by 〈σ〉 = −m and 〈|∆|〉 corresponding to the
minimum of Ω(T, µ).



D. Blaschke et al.: Coexistence of color superconductivity and chiral symmetry breaking. . . 107

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

M

∆

Fig. 1. The contour plot for the thermodynamic potential as
a function of m and ∆ at zero temperature and the chemical
potential µ = 0 MeV.

3.2 Numerical results: Type I

It is quite illustrative to look at the contour plots of the
thermodynamic potential. For several values of µ at T = 0
they are shown in figs. 1–4 where one can follow the ap-
pearance and disappearance of local minima, maxima,
and saddle points of the thermodynamic potential with
increasing chemical potential. For zero temperature and
chemical potential we have, as expected, a nonzero con-
stituent quark mass (quark condensate) corresponding to
the absolute minimum of the thermodynamic potential at
m ∼ 350 MeV and 〈|∆|〉 = 0 in fig. 1. At a certain chemical
potential, a new local minimum related to the diquark con-
densate near 〈|∆|〉 ∼ 110 MeV and m = 0 (fig. 2), but it
does not yet give the absolute minimum. There is also a lo-
cal maximum around m ∼ 200 MeV and 〈|∆|〉 = 0. As the
matter becomes more dense, the second minimum lowers
until it becomes degenerate with the first minimum, while
the average value of σ (or −m) remains almost unchanged
(see fig. 3). Above the corresponding (critical) chemical
potential µc ≈ 321 MeV, the second minimum becomes
the absolute one and a first-order transition occurs, dur-
ing which 〈σ〉 discontinuously changes to zero while the
diquark condensate acquires nonzero value breaking the
color symmetry of the strong interaction. This character-
izes the color superconducting phase transition in quark
matter. Furthermore, the local minimum on the m-axis
merges the saddle point (see fig. 4) and, at still higher µ,
only the local minimum on the∆-axis near |∆| ∼ 130 MeV
and m = 0 remains.

At a fixed chemical potential above µc, with the tem-
perature rising, the average value of |∆| decreases until it
reaches zero at the critical temperature Tc which can be
roughly estimated using the BCS theory formula

Tc ≈ 0.57 〈|∆|〉T=0 . (29)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

M

∆

Fig. 2. The contour plot for the thermodynamic potential as
a function of m and ∆ at zero temperature and the chemical
potential µ = 340 MeV.
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Fig. 3. The contour plot for the thermodynamic potential as
a function of m and ∆ at zero temperature and the chemical
potential µ = 350 MeV.

Above this temperature quark matter is in the symmetric
phase2 where the chiral and color symmetries are restored.
Finally, we obtain the phase diagram shown in fig. 5 with
three phases: the hadron phase, the 2SC phase, and the
symmetric phase. All the three phases coexist at the triple
point: Tt ≈ 55 MeV and µt ≈ 305 MeV.

2 According to recent investigations [48], a so-called pseudo-
gap phase as a precursor of color superconductivity can occur
in this region.
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Fig. 4. The contour plot for the thermodynamic potential as
a function of m and ∆ at zero temperature and the chemical
potential µ = 400 MeV.
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Fig. 5. The quark matter phase diagram from the NJL model
with type-I parameter set. In phase I both chiral and diquark
condensates vanish; in phase II the chiral symmetry is broken;
in phase III the chiral symmetry is restored while the diquark
condensate is nonzero.

3.3 Numerical results: Type II

As for the type-I parameter set, at zero T and µ only the
constituent quark mass m, being the order parameter for
the chiral condensate, is nonzero, whereas the diquark gap
∆ vanishes. However, the vacuum value of m is lower than
that for type I and, with the chemical potential increas-
ing, µ becomes equal to the vacuum value of m before the
second local minimum, corresponding to the diquark con-
densate, appears. At further increase of µ the constituent
quark mass decreases, and it would vanish at µ = µ1,

µ1 =

√
Λ2 − π2

3G
, (30)

0 0.02 0.04 0.06 0.08 0.1
0

0.005
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∆

Fig. 6. The contour plot for the thermodynamic potential as
a function of m and ∆ at zero temperature and the chemical
potential µ = 286 MeV for type-II parameter set.
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Fig. 7. The quark matter phase diagram from the NJL model
with type-II parameter set. In phase I both chiral and diquark
condensates vanish; in phase II the chiral symmetry is broken;
in phase III the chiral symmetry is restored while the diquark
condensate is nonzero; in phase IV both the chiral and diquark
condensates coexist.

if the diquark condensate did not appear. Actually, at the
critical value µ1 both the quark condensate and the di-
quark condensate are small but nonzero.

The changes of the local extrema for increasing
chemical potential are similar to those shown in figs. 1–4.
The cases of dilute (µ = 0) and very dense matter
(µ = 400 MeV) are qualitatively analogous, only the ab-
solute values of m and |∆| at which the local minima are
found are different. At intermediate densities, however,
there is a qualitative difference. Within a very narrow
range of values of the chemical potential, there exists a
new phase of massive superconducting matter. One can
see this in fig. 6 for µ = 286 MeV. At higher µ the chiral



D. Blaschke et al.: Coexistence of color superconductivity and chiral symmetry breaking. . . 109

symmetry is restored and the quark matter is in the pure
superconducting phase. A possibility of the chiral diquark
condensates to coexist at certain conditions has been
already noticed in ref. [49].

Thus, for type-II parameter set, the transition from
the hadronic to the superconducting phase is of the second
order. In this case there are no degenerate local minima
in the thermodynamic potential separated by a barrier.
This behavior is unlike to what is commonly expected for
a cold and dense matter but it parallels the findings of
ref. [38], where vector interactions are responsible for this
behavior.

The average value of |∆| is much smaller than for
type-I parameter set. As a consequence, the border
between 2SC and the symmetric phases of quark matter
lies at noticeably lower temperatures. The phase diagram
obtained in our model for type-II parameter set is shown
in fig. 7.

4 Conclusion

In the framework of the simple NJL model for two fla-
vors, a phase diagram is obtained for T = 0–200 MeV
and µ = 0–450 MeV. Three phases are found for type-I
parameter set and four phases for type-II parameter set.
The critical temperature and chemical potential obtained
in type-I scheme differ from those obtained with type-II
parameter set. At T = 0, µc ≈ 320 MeV for type-I param-
eter set and µc ≈ 288 MeV for type II. The corresponding
quark densities differ by a factor 1.5–1.7. The critical tem-
perature for type-II parameter set is as low as 7 MeV and
thus much closer to critical temperatures for the paring
instability in nuclear-matter systems (see [50]), whereas
for type-I parameter set the critical temperatures are an
order of magnitude larger. This striking difference in the
critical parameters obtained within the same model calls
for a more detailed investigation of the question of model
parametrization.

In our work, the constant H was not obtained from a
fit to observable data. Instead, Fierz transformation ar-
guments have been used to fix the ratio H/G = 3/4. A
parameterization would be favourable where (in the spirit
of type-II model) experimentally measured quantities, like
ρ-meson width, are used rather than nonobservable ones
(quark condensate etc.). It would therefore be more consis-
tent to fit the constant H from baryon properties, see [51,
52] and also to go beyond the mean-field level of descrip-
tion. These investigations shall be performed in future
work where it remains to be clarified which critical pa-
rameters for the color superconducting phase transition
can be considered more realistic and of which order the
phase transition is.
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